

Update on the Measurement of the Branching Ratio of D^0 **g** $K^+\pi^-$ to D^0 **g** $K^-\pi^+$

Jonathan Link

University of California Davis

Focus Group Meeting

August 25, 2000

D^0 **g** $K^+\pi^-$ Can Occur Through

Double Cabibbo Suppression (DCS)

or

Mixing
Followed by a Cabibbo
Favored Decay (CF)

Standard Model predictions for contributions to the relative branching ratio.

$$\tan^4 ?_C \approx 0.25\%$$

$$10^{-7}$$
 to 10^{-3}

In this study we measure the branching ratio r_{DCS} =DCS/CF.

Event Selection

- Loose Wobs cuts: $\Delta W_K > 1/2$ and $\Delta W_{\pi} > -2$, all tracks have consistency > -4.
- The primary has at least 2 tracks in addition to the D^0 .
- The primary is in target $>-1\sigma$.
- ISO1 < 10%
- $L/\sigma_L > 5$.
- $p_D > -160.+280.abs(p_K p_{\pi})/(p_K + p_{\pi})$
- All tracks have $CL_{\mu} < 1\%$.
- Soft π is singly ionized.
- Soft π is not identified as an electron by Cerenkov and EM calorimeters.

Monte Carlo Background Studies

Backgrounds from other D^0 decays peak in the D^* signal region!

If not dealt with these backgrounds could seriously bias an analysis.

The Worst BG is CF $K\pi$ Double Mis-id

The double mis-id Δm is indistinguishable from the correctly identified signal.

So we use a tight Cerenkov based mis-id cut in a $\pm 4\sigma$ window about the D^0 with $K\pi$ reconstructed as πK .

How do we Treat The Other Mis-id BG's?

- We could target K^+K^- and $\pi^+\pi^-$ just like we did with $K^-\pi^+$. This carves holes in the D^0 sidebands.
- We could use hard Cerenkov based id cuts everywhere.

 A big hit in yield and very little improvement in S/N.
- Try something completely different.

A New Method

- Divide the data into 1 MeV wide bins in Δm , and fit the D^0 in each bin.
- Fit the KK and $\pi\pi$ reflections with Monte Carlo events.

Fit the Δm Distributions

- Fitted D^0 yields are plotted in the appropriate Δm bins.
- Background is fit to: $f(m) = a(m m_p)^{1/2} + b(m m_p)^{3/2}$.
- DCS signal is fit directly to the CF histogram signal region.

How Wide Should the Masked Region Be?

# Points	BR (%)	X ² /ndf
8	0.456 ± 0.094	85.0/69
9	0.468 ± 0.094	78.4/68
10	0.482 ± 0.094	70.0/67
11	0.485±0.094	69.7/66
12	0.486±0.094	69.6/65

The branching ratio stabilizes with a mask of 10 points, and the X^2 /ndf of the fit is smallest with a mask of 10 points.

Systematic Error Studies

Fit Variants: 1. Shift bin centers (Bins start at 0.139, 0.13925 and 0.1395).

- 2. Vary total number of points in BG (38, 40 and 42).
- 3. Fit WS and RS Backgrounds together and separately.
- 4. Count entries above BG in signal region.

 $\sigma_{\text{fit sys}} = 0.0529\%$ total

But the fit systematic method of Jim and Rob does not account for the size of the errors!

 $\sigma_{\text{fit sys}} = 0.0261\%$ without counting method

Cut Variant Systematic Study

Variant	Branching Ratio (%)
No electron id on soft π	0.4795 ± 0.1040
No asymmetry cut	0.4569 ± 0.0973
No CL _µ cut	0.4785 ± 0.0957
No multiplicity of primary cut	0.4785 ± 0.1050
Primary in target $> 0\sigma$	0.4762 ± 0.0957
Primary in target $>-1.5\sigma$	0.4895 ± 0.0953

$$\sigma_{\text{cut sys}} = 0.0099\%$$

Split Sample Systematic

- D^0 - D^0 bar
- Z primary > and < -3.75
- $p_D > and < 75 \text{ GeV}$
- Run Number and < 9750

 $\sigma_{\text{split sys}} = 0.0337 \ (< \sigma_{\text{stat}} = 0.0937)$

$$\sigma_{\text{split sys}} = 0.0937 \ (p_D \text{ only})$$

Any way you look at this it is still not larger than σ_{stat} .

Total Systematic Error

If I use my favored estimates of systematic error

$$\sigma_{\text{fit sys}} = 0.0261\%$$

$$\sigma_{\text{cut sys}} = 0.0099\%$$

$$\sigma_{\text{split sys}} = 0.0\%$$

Then...

$$\sigma_{\text{total sys}} = 0.0279\%$$

And the branching ratio with full errors would be...

$$r_{DCS} = (0.482 \pm 0.093 \pm 0.028)\%$$

Possible Effects of Mixing

• If charm mixing is significant then decay rate as a function of time is:

$$r(t/t) = \left\{ r_{DCS} + \sqrt{r_{DCS}} y'(t/t) + \frac{(x'^2 + y'^2)}{4} (t/t)^2 \right\} e^{(-t/t)}$$

$$x' \equiv x \cos d + y \sin d$$

• With
$$x' \equiv x \cos d + y \sin d$$
, $y' \equiv y \cos d - x \sin d$,

$$x \equiv \frac{\Delta m}{\Gamma}$$
, $y \equiv \frac{\Delta \Gamma}{2\Gamma}$ and δ is the strong phase.

- The measured BR depends on the lifetime acceptance of the analysis.
- We use a D^0 **g** $K^-\pi^+$ Monte Carlo to study the effects of mixing on the measured BR (r_{meas}) .

$$(D^{0} \to K^{+}p^{-})_{data}^{expected} = \sum_{i}^{MCaccepted} W(t_{i}, x', y', r_{DCS})$$

Where

$$W(t, x', y', r_{DCS}) = \frac{CF_{data}^{accepted}}{CF_{MC}^{accepted}} \left(r_{DCS} + \sqrt{r_{DCS}} y'(t/t) + \frac{(x'^2 + y'^2)}{4} (t/t)^2 \right)$$

Effects of Mixing Continued

• We find r_{DCS} as a function of x', y' and r_{meas} ...

$$r_{DCS} = y'^{2} \langle t/t \rangle^{2} - \frac{(x'^{2} + y'^{2})}{4} \langle (t/t)^{2} \rangle + r_{meas} - \frac{y'}{2} \langle t/t \rangle \sqrt{y'^{2} \langle t/t \rangle^{2} - (x'^{2} + y'^{2}) \langle (t/t)^{2} \rangle + 4r_{meas}}$$

A First Attempt at a Mixing Study

The data is split into 2 sets based on lifetime t.

The analysis is run on each data set.

The mixing curve of both sets are plotted on top od each other.

I looked at two different time splits.

Both splits favor negative y', but they are also consistent with zero or even +0.02.

Conclusions

• I measure the branching ratio to be:

$$r_{DCS} = (0.482 \pm 0.093 \pm 0.028)\%$$

- I'm not yet satisfied with the mathematics of the systematic error.
- Early mixing studies using this method don't appear to be very sensitive, but they do prefer a negative value of y'.